Google, Apple, and others show large language models trained on public data expose personal information
Large language models like OpenAI’s GPT-3 and Google’s GShard learn to write humanlike text by internalizing billions of examples from the public web. Drawing on sources like ebooks, Wikipedia, and social media platforms like Reddit, they make inferences to complete sentences and even whole paragraphs. But a new study jointly published by Google, Apple, Stanford University, OpenAI, the University of California, Berkeley, and Northeastern University demonstrates the pitfall of this training approach. In it, the coauthors show that large language models can be prompted to show sensitive, private information when fed certain words and phrases.